267 research outputs found

    Evidence for spatially-responsive neurons in the rostral thalamus

    Get PDF
    Damage involving the anterior thalamic and adjacent rostral thalamic nuclei may result in a severe anterograde amnesia, similar to the amnesia resulting from damage to the hippocampal formation. Little is known, however, about the information represented in these nuclei. To redress this deficit, we recorded units in three rostral thalamic nuclei in freely-moving rats (the parataenial nucleus, the anteromedial nucleus and nucleus reuniens). We found units in these nuclei possessing previously unsuspected spatial properties. The various cell types show clear similarities to place cells, head direction cells, and perimeter/border cells described in hippocampal and parahippocampal regions. Based on their connectivity, it had been predicted that the anterior thalamic nuclei process information with high spatial and temporal resolution while the midline nuclei have more diffuse roles in attention and arousal. Our current findings strongly support the first prediction but directly challenge or substantially moderate the second prediction. The rostral thalamic spatial cells described here may reflect direct hippocampal/parahippocampal inputs, a striking finding of itself, given the relative lack of place cells in other sites receiving direct hippocampal formation inputs. Alternatively, they may provide elemental thalamic spatial inputs to assist hippocampal spatial computations. Finally, they could represent a parallel spatial system in the brain

    Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Geobacter sulfurreducens </it>is a member of the <it>Geobacter </it>species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for <it>Geobacter sulfurreducens</it>. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of <it>G. sulfurreducens </it>using thermodynamic variability analysis.</p> <p>Findings</p> <p>As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in <it>E. coli </it>by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of <it>G. sulfurreducens </it>that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility) is significant for these reactions.</p> <p>Conclusions</p> <p>Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of Δ<sub>r</sub>G' of every reaction in the model leading to the prediction of regulatory sites in the metabolic network, thereby characterizing the regulatory network in both a model organism such as <it>E. coli </it>as well as a non model organism such as <it>G. sulfurreducens</it>.</p

    Nucleus reuniens of the thalamus contains head direction cells

    Get PDF
    Discrete populations of brain cells signal heading direction, rather like a compass. These ‘head direction’ cells are largely confined to a closely-connected network of sites. We describe, for the first time, a population of head direction cells in nucleus reuniens of the thalamus in the freely-moving rat. This novel subcortical head direction signal potentially modulates the hippocampal CA fields directly and, thus, informs spatial processing and memor

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks

    Get PDF
    The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility). The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample (10610^6) of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility.Comment: 11 pages, 6 figures, 1 table; for associated supporting material see http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.100256

    Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations

    Get PDF
    One of teenagers' key developmental tasks is to engage in new and meaningful relationships with peers and adults outside the family context. Attachment-derived expectations about the self and others in terms of internal attachment working models have the potential to shape such social reorientation processes critically and thereby influence adolescents' social-emotional development and social integration. Because the neural underpinnings of this developmental task remain largely unknown, we sought to investigate them by functional magnetic resonance imaging. We asked n = 44 adolescents (ages 12.01-18.84 years) to evaluate positive and negative adjectives regarding either themselves or a close other during an adapted version of the well-established self-other trait-evaluation task. As measures of attachment, we obtained scores reflecting participants' positive versus negative attachment-derived self- and other-models by means of the Relationship Questionnaire. We controlled for possible confounding factors by also obtaining scores reflecting internalizing/externalizing problems, schizotypy, and borderline symptomatology. Our results revealed that participants with a more negative attachment-derived self-model showed increased brain activity during positive and negative adjective evaluation regarding the self, but decreased brain activity during negative adjective evaluation regarding a close other, in bilateral amygdala/parahippocampus, bilateral anterior temporal pole/anterior superior temporal gyrus, and left dorsolateral prefrontal cortex. These findings suggest that a low positivity of the self-concept characteristic for the attachment anxiety dimension may influence neural information processing, but in opposite directions when it comes to self- versus (close) other-representations. We discuss our results in the framework of attachment theory and regarding their implications especially for adolescent social-emotional development and social integration

    Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    Get PDF
    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats

    In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans

    Get PDF
    The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO2. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet
    corecore